10 research outputs found

    Sensor-based augmented visual feedback for coordination training in healthy adults: a scoping review.

    Get PDF
    INTRODUCTION Recent advances in sensor technology demonstrate the potential to enhance training regimes with sensor-based augmented visual feedback training systems for complex movement tasks in sports. Sensorimotor learning requires feedback that guides the learning process towards an optimal solution for the task to be learned, while considering relevant aspects of the individual control system-a process that can be summarized as learning or improving coordination. Sensorimotor learning can be fostered significantly by coaches or therapists providing additional external feedback, which can be incorporated very effectively into the sensorimotor learning process when chosen carefully and administered well. Sensor technology can complement existing measures and therefore improve the feedback provided by the coach or therapist. Ultimately, this sensor technology constitutes a means for autonomous training by giving augmented feedback based on physiological, kinetic, or kinematic data, both in real-time and after training. This requires that the key aspects of feedback administration that prevent excessive guidance can also be successfully automated and incorporated into such electronic devices. METHODS After setting the stage from a computational perspective on motor control and learning, we provided a scoping review of the findings on sensor-based augmented visual feedback in complex sensorimotor tasks occurring in sports-related settings. To increase homogeneity and comparability of the results, we excluded studies focusing on modalities other than visual feedback and employed strict inclusion criteria regarding movement task complexity and health status of participants. RESULTS We reviewed 26 studies that investigated visual feedback in training regimes involving healthy adults aged 18-65. We extracted relevant data regarding the chosen feedback and intervention designs, measured outcomes, and summarized recommendations from the literature. DISCUSSION Based on these findings and the theoretical background on motor learning, we compiled a set of considerations and recommendations for the development and evaluation of future sensor-based augmented feedback systems in the interim. However, high heterogeneity and high risk of bias prevent a meaningful statistical synthesis for an evidence-based feedback design guidance. Stronger study design and reporting guidelines are necessary for future research in the context of complex skill acquisition

    A Cellular Assay for Spike/ACE2 Fusion: Quantification of Fusion-Inhibitory Antibodies after COVID-19 and Vaccination

    No full text
    Not all antibodies against SARS-CoV-2 inhibit viral entry, and hence, infection. Neutralizing antibodies are more likely to reflect real immunity; however, certain tests investigate protein/protein interaction rather than the fusion event. Viral and pseudoviral entry assays detect functionally active antibodies but are limited by biosafety and standardization issues. We have developed a Spike/ACE2-dependent fusion assay, based on a split luciferase. Hela cells stably transduced with Spike and a large fragment of luciferase were co-cultured with Hela cells transduced with ACE2 and the complementary small fragment of luciferase. Cell fusion occurred rapidly allowing the measurement of luminescence. Light emission was abolished in the absence of Spike and reduced in the presence of proteases. Sera from COVID-19-negative, non-vaccinated individuals or from patients at the moment of first symptoms did not lead to a significant reduction of fusion. Sera from COVID-19-positive patients as well as from vaccinated individuals reduced the fusion. This assay was more correlated to pseudotyped-based entry assay rather than serology or competitive ELISA. In conclusion, we report a new method measuring fusion-inhibitory antibodies in serum, combining the advantage of a complete Spike/ACE2 interaction active on entry with a high degree of standardization, easily allowing automation in a standard bio-safety environment

    Development of an Open-source and Lightweight Sensor Recording Software System for Conducting Biomedical Research: Technical Report.

    Get PDF
    BACKGROUND Digital sensing devices have become an increasingly important component of modern biomedical research, as they help provide objective insights into individuals' everyday behavior in terms of changes in motor and nonmotor symptoms. However, there are significant barriers to the adoption of sensor-enhanced biomedical solutions in terms of both technical expertise and associated costs. The currently available solutions neither allow easy integration of custom sensing devices nor offer a practicable methodology in cases of limited resources. This has become particularly relevant, given the need for real-time sensor data that could help lower health care costs by reducing the frequency of clinical assessments performed by specialists and improve access to health assessments (eg, for people living in remote areas or older adults living at home). OBJECTIVE The objective of this paper is to detail the end-to-end development of a novel sensor recording software system that supports the integration of heterogeneous sensor technologies, runs as an on-demand service on consumer-grade hardware to build sensor systems, and can be easily used to reliably record longitudinal sensor measurements in research settings. METHODS The proposed software system is based on a server-client architecture, consisting of multiple self-contained microservices that communicated with each other (eg, the web server transfers data to a database instance) and were implemented as Docker containers. The design of the software is based on state-of-the-art open-source technologies (eg, Node.js or MongoDB), which fulfill nonfunctional requirements and reduce associated costs. A series of programs to facilitate the use of the software were documented. To demonstrate performance, the software was tested in 3 studies (2 gait studies and 1 behavioral study assessing activities of daily living) that ran between 2 and 225 days, with a total of 114 participants. We used descriptive statistics to evaluate longitudinal measurements for reliability, error rates, throughput rates, latency, and usability (with the System Usability Scale [SUS] and the Post-Study System Usability Questionnaire [PSSUQ]). RESULTS Three qualitative features (event annotation program, sample delay analysis program, and monitoring dashboard) were elaborated and realized as integrated programs. Our quantitative findings demonstrate that the system operates reliably on consumer-grade hardware, even across multiple months (>420 days), providing high throughput (2000 requests per second) with a low latency and error rate (<0.002%). In addition, the results of the usability tests indicate that the system is effective, efficient, and satisfactory to use (mean usability ratings for the SUS and PSSUQ were 89.5 and 1.62, respectively). CONCLUSIONS Overall, this sensor recording software could be leveraged to test sensor devices, as well as to develop and validate algorithms that are able to extract digital measures (eg, gait parameters or actigraphy). The proposed software could help significantly reduce barriers related to sensor-enhanced biomedical research and allow researchers to focus on the research questions at hand rather than on developing recording technologies

    Cholesterol 25-hydroxylase on chromosome 10q is a susceptibility gene for sporadic Alzheimer's disease

    Get PDF
    Alzheimer's disease (AD) is the most common cause of dementia. It is characterized by beta-amyloid (A beta) plaques, neurofibrillary tangles and the degeneration of specifically vulnerable brain neurons. We observed high expression of the cholesterol 25-hydroxylase (CH25H) gene in specifically vulnerable brain regions of AD patients. CH25H maps to a region within 10q23 that has been previously linked to sporadic AD. Sequencing of the 5' region of CH25H revealed three common haplotypes, CH25Hchi2, CH25Hchi3 and CH25Hchi4; CSF levels of the cholesterol precursor lathosterol were higher in carriers of the CH25Hchi4 haplotype. In 1,282 patients with AD and 1,312 healthy control subjects from five independent populations, a common variation in the vicinity of CH25H was significantly associated with the risk for sporadic AD (p = 0.006). Quantitative neuropathology of brains from elderly non-demented subjects showed brain A beta deposits in carriers of CH25Hchi4 and CH25Hchi3 haplotypes, whereas no A beta deposits were present in CH25Hchi2 carriers. Together, these results are compatible with a role of CH25Hchi4 as a putative susceptibility factor for sporadic AD; they may explain part of the linkage of chromosome 10 markers with sporadic AD, and they suggest the possibility that CH25H polymorphisms are associated with different rates of brain A beta deposition

    Illustrierte Flora von Mittel-Europa : mit besonderer Berücksichtigung von Deutschland, Österreich und der Schweiz /

    No full text
    Zum Gebrauche in den Schulen und zum Selbstunterricht1. 1. Monocotyledones : Pteridophyta, Gymnospermae und Monocotyledones / bearb. und hrsg. von Karl Suessenguth unter Mitw. von Ernst Bergdolt e. a.2. Monocotyledones3. 1. Dicotyledons / hrsg. von Karl-Heinz Rechinger unter Mitarb. von Annelis Schreiber3. 3. Dicotyledons : Nymphaeceen, Ceratophyllaceen, Magnoliaceae Paeoniaceen, Ranunculaceen / hrsg. von Karl-Heinz Rechinger und Jurgen Damboldt4. 1. Dicotyledons : Berberidaceae, Lauraceae, Rhoeadales / hrsg. von Friedrich Markgraf unter Mitarb. von L. Hoerhammer e. a.4. 2. Dicotyledons : Droseraceae, Philadelphaceae, Grossulariaceae, Crassulaceae, Saxifragaceae, Parnassiaceae, Rosaceae / hrsg. von Herbert HuberBd.III-VI. Dicotyledons6. 1. Dicotyledons : Scrophulariaceae, Orobanchaceae, Lentibulariaceae, Globulariaceae, Plantaginaceae / hrsg. von Dimitri Hartl und Gerhard WagenitzBd.VII. Gesamtregiste
    corecore